Student Projects
We offer student projects such as bachelor theses, semester projects or master theses and we are also open for students' own proposals on potential students projects.
Develop Dexterous Humanoid Robotic Hands
Design and build dexterous human-like robotic hands with us at the Soft Robotics Lab and the ETH spin-off mimic. We will explore different possibilities of developing design features and sub-systems. The developed features shall be integrated into a fully functional robotic hand and applied to solve practical manipulation challenges.
Keywords
humanoid, robotics, hand, dexterity, soft robotics, actuation, prototyping, modeling and control, mechatronics, biomimetic, design, 3D printing, silicone casting, electronics, machine learning, control
Labels
Semester Project , Master Thesis
Description
Work Packages
Requirements
Contact Details
More information
Open this project... call_made
Published since: 2025-03-24 , Earliest start: 2025-01-01 , Latest end: 2026-03-31
Organization Soft Robotics Lab
Hosts Weirich Stefan
Topics Engineering and Technology
Deep Learning of Residual Physics For Soft Robot Simulation
Incorporating state-of-the-art deep learning approaches to augment conventional soft robotic simulations for a fast, accurate and useful simulation for real soft robots.
Keywords
Soft Robotics, Machine Learning, Physical Modeling, Simulation
Labels
Semester Project , Master Thesis
PLEASE LOG IN TO SEE DESCRIPTION
More information
Open this project... call_made
Published since: 2025-03-02 , Earliest start: 2025-03-01 , Latest end: 2026-03-01
Organization Soft Robotics Lab
Hosts Michelis Mike , Katzschmann Robert, Prof. Dr.
Topics Information, Computing and Communication Sciences , Engineering and Technology
Maturation Platform for Engineered 3D Muscle Tissues
The frontier of research in soft robotics aims at replacing classic soft materials used for actuators with biological ones (muscle) to take advantage of the innate adaptability, energy efficiency, and softness of biological systems. To grow more performant muscle tissues for robotics, we need to engineer a maturation platform for the muscle tissues that can provide the necessary mechanical and electrical cues. Therefore, in this project, we will aim to engineer a maturation platform for skeletal muscle bioactuators. The maturation platform will work as a device that applies cyclic stretch to the growing skeletal muscle tissue by pneumatic actuation. An initial prototype of the maturation platform has already been designed (see image). Your project will start from this prototype and do further optimization to result in a system that can give multiple stretching inputs to different muscle tissues.
Keywords
biohybrid robotics, soft robotics, 3D printing, biomaterials, actuation, material characterization
Labels
Semester Project , Bachelor Thesis , Master Thesis , ETH Zurich (ETHZ)
PLEASE LOG IN TO SEE DESCRIPTION
More information
Open this project... call_made
Published since: 2025-02-19 , Earliest start: 2025-02-20 , Latest end: 2025-10-31
Applications limited to EPFL - Ecole Polytechnique Fédérale de Lausanne , ETH Zurich , Empa , IBM Research Zurich Lab , University of Zurich
Organization Soft Robotics Lab
Hosts Balciunaite Aiste , Katzschmann Robert, Prof. Dr.
Topics Engineering and Technology
Development of a linear electrostatic film actuator for a Humanoid Robotic Hand
Development of a linear electrostatic film actuator for soft robotic applications such as the actuation of a humanoid robotic hand.
Keywords
Electrostatic, Linear actuator, Flexible electronics, Soft Robotics, Humanoid Robotic Hands
Labels
Master Thesis
Description
Work Packages
Requirements
Contact Details
More information
Open this project... call_made
Published since: 2025-02-13 , Earliest start: 2025-02-23 , Latest end: 2025-12-31
Organization Soft Robotics Lab
Hosts Katzschmann Robert, Prof. Dr.
Topics Engineering and Technology
Design and Fabrication of Dexterous, Humanoid Robotic Hand
Design and build dexterous human-like robotic hands with us at the Soft Robotics Lab and the spin-off mimic. We will explore different possibilities of developing design features such as tendon-driven mechanisms, lightweight structures, and complex mechanical joints of the hand. The developed features shall be integrated into a fully functional robotic hand and applied to solve practical manipulation challenges.
Keywords
humanoid, robotics, hand, dexterity, soft robotics, actuation, prototyping, modeling and control, mechatronics, biomimetic, design, 3D printing, silicone casting
Labels
Semester Project , Bachelor Thesis , Master Thesis
Description
Work Packages
Requirements
Contact Details
More information
Open this project... call_made
Published since: 2025-02-13 , Earliest start: 2024-09-01 , Latest end: 2025-07-24
Organization Soft Robotics Lab
Hosts Hinchet Ronan , Katzschmann Robert, Prof. Dr. , Weirich Stefan
Topics Engineering and Technology
Computational Modeling of Muscle Dynamics for Biohybrid Robots
This research aims to advance biohybrid robotics by integrating living biological components with artificial materials. The focus is on developing computational models for artificial muscle cells, a critical element in creating biohybrid robots. Challenges include modeling the complex and nonlinear nature of biological muscles, considering factors like elasticity and muscle fatigue, as well as accounting for fluid-structure interaction in the artificial muscle's environment. The research combines first principle soft body simulation methods and machine learning to improve understanding and control of biohybrid systems.
Keywords
Biohybrid Robotics, Computational Models, Soft Body Simulation, Finite Element Method (FEM), Muscle Dynamics, Soft Robotics
Labels
Semester Project , Bachelor Thesis , Master Thesis
Description
Work Packages
Requirements
Contact Details
More information
Open this project... call_made
Published since: 2025-02-04 , Earliest start: 2025-02-01 , Latest end: 2026-02-01
Organization Soft Robotics Lab
Hosts Mekkattu Manuel , Katzschmann Robert, Prof. Dr.
Topics Mathematical Sciences , Information, Computing and Communication Sciences , Engineering and Technology , Biology , Physics
GPU Acceleration of Soft Robot Modeling: Enhancing Performance with CUDA
We are enhancing soft robot modeling by developing a GPU-accelerated version of our FEM-based framework using CUDA. This research focuses on optimizing parallel computations to significantly speed up simulations, enabling larger problem sizes and real-time control. By improving computational efficiency, we aim to advance soft robotics research and facilitate more detailed, dynamic simulations.
Keywords
Soft Body Simulation, high-performance computing, GPU programming, Parallel Computing, Finite Element Method (FEM), Multiphysics Simulation
Labels
Semester Project , Bachelor Thesis , Master Thesis
Description
Work Packages
Requirements
Contact Details
More information
Open this project... call_made
Published since: 2025-02-04 , Earliest start: 2025-02-01 , Latest end: 2026-02-01
Organization Soft Robotics Lab
Hosts Katzschmann Robert, Prof. Dr. , Mekkattu Manuel
Topics Information, Computing and Communication Sciences , Engineering and Technology
Advancing Soft Robot Modeling: Integrating Physics, Optimization, and Control
We are advancing soft robot simulation with FEM and energy-based methods to model complex, adaptive behaviors. This research entails developing the framework to support diverse designs, integrate new physics models, and optimize performance, enabling enhanced control and real-world applications of soft robots.
Keywords
Soft Robotics, Finite Element Method (FEM), Physical Modeling, Benchmarking, Optimization, Multiphysics Simulation, Sim-to-Real
Labels
Semester Project , Bachelor Thesis , Master Thesis
Description
Work Packages
Requirements
Contact Details
More information
Open this project... call_made
Published since: 2025-02-04 , Earliest start: 2025-02-01 , Latest end: 2026-02-01
Organization Soft Robotics Lab
Hosts Mekkattu Manuel , Katzschmann Robert, Prof. Dr.
Topics Information, Computing and Communication Sciences , Engineering and Technology
Development of a Giant Humanoid Robotic Hand
Development of a Giant Humanoid Robotic Hand for the rapid deployment and handling of equipment in flooding and earthquake disaster scenarios
Keywords
Soft Robotics, Humanoid Robotic Hand, Tendon driven, Dexterous manipulator, Rolling contact joints
Labels
Semester Project , Master Thesis
PLEASE LOG IN TO SEE DESCRIPTION
More information
Open this project... call_made
Published since: 2025-01-06 , Earliest start: 2025-01-06 , Latest end: 2025-08-31
Organization Soft Robotics Lab
Hosts Hinchet Ronan , Katzschmann Robert, Prof. Dr.
Topics Engineering and Technology
Development of sensor networks integrated on scaly artificial robotic skins
Development of a multi-sensory network integrated on artificial scales serving as soft robotic skin for robotic limbs
Keywords
Soft Robotics, robotic skin, sensor network, artificial scale, sensory scales
Labels
Semester Project , Master Thesis
PLEASE LOG IN TO SEE DESCRIPTION
More information
Open this project... call_made
Published since: 2025-01-06 , Earliest start: 2025-01-06 , Latest end: 2025-08-31
Organization Soft Robotics Lab
Hosts Hinchet Ronan , Katzschmann Robert, Prof. Dr. , Kim Jaehoon
Topics Engineering and Technology
Assembly Assistant: Crafting your robotic companion for teamwork
This project is inspired by the vision of seamless human-robot collaboration in household settings. As our homes become smarter, the need for robotic systems that can work alongside humans to perform tasks with precision and adaptability is growing. This project empowers individuals to design and build a robotic companion tailored to assist with household tasks like assembling furniture. By fostering teamwork between humans and robots, the project highlights how technology can enhance everyday life, promoting efficiency, creativity, and a shared sense of accomplishment. It envisions a future where robots are not just tools but collaborative partners, making home life easier, more productive, and more enjoyable for everyone.
Keywords
human-robot collaboration, egocentric vision, dexterous manipulation
Labels
Semester Project , Master Thesis , ETH Zurich (ETHZ)
PLEASE LOG IN TO SEE DESCRIPTION
More information
Open this project... call_made
Published since: 2025-01-06 , Earliest start: 2025-01-13
Organization Computer Vision and Geometry Group
Hosts Wang Xi , Gavryushin Alexey , Yang Chenyu
Topics Information, Computing and Communication Sciences
Enhancing performance of electrostatic rotational motors for the next generation of robotic actuators
This project aims to enhance an electrostatic actuator by improving its specific power and power density while optimizing its manufacturing process, through approaches such as mechanical redesign, materials innovation, or computational optimization.
Keywords
soft robotics, electrostatic motors, electrostatic actuators, mechanical design
Labels
Master Thesis
Description
Goal
Contact Details
More information
Open this project... call_made
Published since: 2025-01-05 , Earliest start: 2025-01-06 , Latest end: 2025-09-01
Organization Soft Robotics Lab
Hosts Katzschmann Robert, Prof. Dr. , Toshimitsu Yasunori , Kazemipour Amirhossein
Topics Engineering and Technology
For all projects, please contact the responsible supervisor if you have questions and apply via sirop.org with your cover letter, detailed CV, transcripts, and prior publications (if you have any).
In case you have project ideas related to our research areas or research platforms, take the opportunity and propose your own project!